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Completely monotone functions (CMF)
and Bernstein functions (BF)

A function f : (0,∞) → R is called completely monotone if it is of class C∞

and
(−1)nf (n)(t) ≥ 0, for all t > 0, n = 0, 1, ...

(The simplest example: e−λt, λ > 0.)

Bernstein’s theorem: f(t) ∈ CMF if and only if

f(t) =

∫ ∞
0

e−tx dg(x),

where g(x) is nondecreasing and the integral converges for 0 < t <∞.

A C∞ function f : (0,∞)→ R is called a Bernstein function if

f(t) ≥ 0 and f ′(t) ∈ CMF .
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Some useful properties

Proposition:

(a) The class CMF is closed under pointwise addition and multiplication;

(b) The class BF is closed under pointwise addition, but, in general not under
multiplication;

(c) If f ∈ CMF and ϕ ∈ BF , then the composite function f(ϕ) ∈ CMF ;

(d) If f ∈ BF , then f(t)/t ∈ CMF ;

(e) Let f ∈ L1
loc(R+) be a nonnegative and nonincreasing function, such that

limt→+∞ f(t) = 0. Then ϕ(s) = sf̂(s) ∈ BF ;

(f) If f ∈ L1
loc(R+) and f ∈ CMF , then f̂(s) admits analytic extension to the

sector | arg s| < π and

| arg f̂(s)| ≤ | arg s|, | arg s| < π.

Pannonian Mathematical Modelling, Novi Sad, April 25-26, 2015. p. 4/27



The operators of fractional integration and differentiation

Jαt - the Riemann-Liouville fractional integral of order α > 0:

Jαt f(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ, α > 0,

where Γ(·) is the Gamma function.

Dα
t - the Riemann-Liouville fractional derivative

CDα
t - the Caputo fractional derivative

D1
t = CD1

t = d/dt; CDα
t = J1−α

t D1
t , Dα

t = D1
tJ

1−α
t , α ∈ (0, 1).
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Mittag-Leffler function

Fractional relaxation equation (λ > 0, 0 < α ≤ 1):

CDα
t u(t) + λu(t) = f(t), t > 0,

u(0) = c0.

The solution is given by:

u(t) = c0Eα(−λtα) +

∫ t

0

τα−1Eα,α(−λτα)f(t− τ) dτ.

Mittag-Leffler function (α, β ∈ R, α > 0):

Eα,β(−t) =

∞∑
k=0

(−t)k

Γ(αk + β)
, Eα(−t) = Eα,1(−t).

E1(−t) = e−t ∈ CMF
Eα(−t) ∈ CMF , iff 0 < α < 1 (Pollard, 1948)
Eα,β(−t) ∈ CMF , iff 0 ≤ α ≤ 1, α ≤ β (Schneider, 1996; Miller, 1999)
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Plots of Eα(−tα) for different values of α ∈ (0, 1].
α = 1 - exponential decay, α ∈ (0, 1) - algebraic decay (t−α).

Completely monotone functions.
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Plots of Eα(−tα) for different values of α ∈ (1, 2].
No more complete monotonicity for α > 1!

Damped oscillations.
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Plots of tα−1Eα,α(−tα) for different values of α ∈ (0, 1].
Completely monotone functions.
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Fractional evolution equation of distributed order

Two alternative forms:∫ 1

0

µ(β)CDβ
t u(t) dβ = Au(t), t > 0, (1)

and

u′(t) =

∫ 1

0

µ(β)Dβ
t Au(t) dβ, t > 0, (2)

A - closed linear unbounded operator densely defined in a Banach space X

Initial condition: u(0) = a ∈ X.
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Two cases for the weight function µ:

• discrete distribution

µ(β) = δ(β − α) +

m∑
j=1

bjδ(β − αj), (3)

where 1 > α > α1... > αm > 0, bj > 0, j = 1, ...,m, m ≥ 0, and δ is the
Dirac delta function;

• continuous distribution

µ ∈ C[0, 1], µ(β) ≥ 0, β ∈ [0, 1], (4)

and µ(β) 6= 0 on a set of a positive measure.
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Discrete distribution:

Multi-term time-fractional equations in the Caputo sense

CDα
t u(t) +

m∑
j=1

bj
CD

αj
t u(t) = Au(t), t > 0, (5)

and in the Riemann-Liouville sense

u′(t) = Dα
t Au(t) +

m∑
j=1

bjD
αj
t Au(t), t > 0 (6)

If m = 0 (single-term equations):
problem (5) is equivalent to (6) with α replaced by 1− α.

All problems are generalizations of the classical abstract Cauchy problem

u′(t) = Au(t), t > 0; u(0) = a ∈ X. (7)
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Solution u(t) of (5) with A = −1 for:
m = 1, α = 0.75, α1 = 0.25,
m = 0, α = 0.25
m = 0, α = 0.75.
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Solution u(t) of (5) with A = −1 for:
m = 2, α = 0.75, α1 = 0.5, α2 = 0.25
m = 1, α = 0.75, α1 = 0.25,
m = 0, α = 0.25
m = 0, α = 0.75.
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Unified approach to the four problems

Rewrite problems (1) and (2) as an abstract Volterra integral equation

u(t) = a+

∫ t

0

k(t− τ)Au(τ) dτ, t ≥ 0; a ∈ X,

where
k̂1(s) = (h(s))

−1
, k̂2(s) = h(s)/s,

In the continuous distribution case:

h(s) =

∫ 1

0

µ(β)sβ dβ.

In the discrete distribution case:

h(s) = sα +

m∑
j=1

bjs
αj.

Define
gi(s) = 1/k̂i(s), i = 1, 2.
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Particular cases

In the single-term case:

k1(t) =
tα−1

Γ(α)
, k2(t) =

t−α

Γ(1− α)
, g1(s) = sα, g2(s) = s1−α,

In the double-term case:

k1(t) = tα−1Eα−α1,α(−b1tα−α1), k2(t) =
t−α

Γ(1− α)
+ b1

t−α1

Γ(1− α1)
,

g1(s) = sα + b1s
α1, g2(s) =

s

sα + b1sα1
= sk̂1(s)!!!

In the case of continuous distribution in its simplest form: µ(β) ≡ 1.

g1(s) =
s− 1

log s
, g2(s) =

s log s

s− 1
.
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Properties of the kernels

Theorem. Let µ(β) be either of the form (3) or of the form (4) with the additional
assumptions µ ∈ C3[0, 1], µ(1) 6= 0, and µ(0) 6= 0 or µ(β) = aβν as β → 0, where
a, ν > 0. Then for i = 1, 2,:

(a) ki ∈ L1
loc(R+) and limt→+∞ ki(t) = 0;

(b) ki(t) ∈ CMF for t > 0;

(c) k1 ∗ k2 ≡ 1;

(d) gi(s) ∈ BF for s > 0;

(e) gi(s)/s ∈ CMF for s > 0;

(f) gi(s) admits analytic extension to the sector | arg s| < π and

| arg gi(s)| ≤ | arg s|, | arg s| < π.

In the discrete distribution case a stronger inequality holds:

| arg gi(s)| ≤ α| arg s|, | arg s| < π.
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The classical abstract Cauchy problem:

u′(t) = Au(t), t > 0; u(0) = a ∈ X.

Main result:

Assume that the classical Cauchy problem is well-posed with solution u(t) satisfying

‖u(t)‖ ≤M‖a‖, t ≥ 0.

Then any of the problems

∫ 1

0

µ(β)CDβ
t u(t) dβ = Au(t), t > 0, u(0) = a ∈ X,

u′(t) =

∫ 1

0

µ(β)Dβ
t Au(t) dβ, t > 0, u(0) = a ∈ X

is well-posed with solution satisfying the same estimate.
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The classical abstract Cauchy problem:

u′(t) = Au(t), t > 0; u(0) = a ∈ X.

T (t) - solution operator (defined by T (t)a = u(t), t ≥ 0);

R(s,A) - resolvent operator:

R(s,A) = (s−A)−1 =

∫ ∞
0

e−stT (t) dt, s > 0,

The Hille-Yosida theorem states that the classical Cauchy problem is well-posed
with solution operator T (t) such that ‖T (t)‖ ≤ M, t ≥ 0, iff R(s,A) is well
defined for s ∈ (0,∞) and

‖R(s,A)n‖ ≤ M

sn
, s > 0, n ∈ N.
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Abstract Volterra integral equation

u(t) = a+

∫ t

0

k(t− τ)Au(τ) dτ, t ≥ 0; a ∈ X,

The Laplace transform of the solution operator S(t)

H(s) =

∫ ∞
0

e−stS(t) dt, s > 0

is given by

H(s) =
g(s)

s
R(g(s), A), g(s) = 1/k̂(s).

The Generation Theorem (Prüss, 1993) states that the integral equation is well-
posed with solution operator S(t) satisfying ‖S(t)‖ ≤M, t ≥ 0, iff

‖H(n)(s)‖ ≤M n!

sn+1
, for all s > 0, n ∈ N0.
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Main result

Theorem.
Suppose that the classical Cauchy problem is well-posed with solution u(t) satisfying

‖u(t)‖ ≤M‖a‖, t ≥ 0.

Then problems (1) and (2) are well-posed and their solutions satisfy the same
estimate.

Proof:
We know

‖R(s,A)n‖ ≤M/sn, s > 0, n ∈ N.
We have to prove

‖H(n)(s)‖ ≤M n!

sn+1
, for all s > 0, n ∈ N0,

where

H(s) =
g(s)

s
R(g(s), A),

and g(s) = 1/k̂(s), R(s,A) = (s−A)−1.
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By the Leibniz rule:

H(n)(s) =

n∑
k=0

(
n
k

)(
g(s)

s

)(n−k)

w(k)(s), w(s) = R(g(s), A). (8)

Formula for the k-th derivative of a composite function:

w(k)(s) =

k∑
p=1

ak,p(s)(−1)pp!(R(g(s), A))p+1, (9)

where the functions ak,p(s) are defined by

ak+1,p(s) = ak,p−1(s)g
′(s) + a′k,p(s), 1 ≤ p ≤ k + 1, k ≥ 1, (10)

ak,0 = ak,k+1 ≡ 0, a1,1(s) = g′(s).

g(s) ∈ BF ⇒ (−1)k+pak,p(s) ∈ CMF . (11)

Proof: by induction.
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So far:

(−1)nH(n)(s) =

n∑
k=0

k∑
p=1

bn,k,p(s)(R(g(s), A))p+1 (12)

where

bn,k,p(s) = (−1)n+p
(
n
k

)(
g(s)

s

)(n−k)

ak,p(s)p!

Positivity?

(−1)k+pak,p(s) ≥ 0, g(s) ∈ BF ⇒ g(s)/s ∈ CMF , s > 0. (13)

⇒ bn,k,p(s) = (−1)n+p
(
n
k

)(
g(s)

s

)(n−k)

ak,p(s)p!

=

(
n
k

)
(−1)n−k

(
g(s)

s

)(n−k)

(−1)k+pak,p(s)p! ≥ 0

(−1)nH(n)(s) =

n∑
k=0

k∑
p=1

bn,k,p(s)(R(g(s), A))p+1
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⇒ ‖H(n)(s)‖ ≤
n∑
k=0

k∑
p=1

bn,k,p(s)‖(R(g(s), A))p+1‖

≤ M

n∑
k=0

k∑
p=1

bn,k,p(s)((g(s))−(p+1)

= M(−1)n(s−1)(n) = Mn!s−(n+1), s > 0.

where we have used that for A ≡ 0:

(−1)n(s−1)(n) =

n∑
k=0

k∑
p=1

bn,k,p(s)(g(s))−(p+1).

Therefore, the conditions of the Generation Theorem are satisfied and the problems
are well-posed with bounded solution operators S(t), satisfying ‖S(t)‖ ≤M , t ≥ 0.
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Subordination formula

T (t) - the solution operator of the classical Cauchy problem.
Under the assumptions of the previous theorem, the solution operator S(t) of
problem (1), resp. (2), satisfies the subordination identity

S(t) =

∫ ∞
0

ϕ(t, τ)T (τ) dτ, t > 0, (14)

with function ϕ(t, τ) defined by

ϕ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞
est−τg(s)

g(s)

s
ds, γ, t, τ > 0, (15)

The function ϕ(t, τ) is a probability density function, i.e. it satisfies the properties

ϕ(t, τ) ≥ 0,

∫ ∞
0

ϕ(t, τ) dτ = 1. (16)

Hint: take function ϕ(t, τ) such that Lt{ϕ}(s, τ) = g(s)
s e−τg(s), s, τ > 0.
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Conclusions

Various possibilities for the operator A: e.g. the Laplace operator, general second
order symmetric uniformly elliptic operators, operators leading to the so-called
time-space fractional equations, such as: space-fractional derivatives (e.g. in the
Riesz sense), fractional powers of the multi-dimensional Laplace operator, other
forms of fractional Laplacian, fractional powers of more general elliptic operators,
etc.

The developed technique is applicable to more general abstract Volterra integral
equations with kernel k(t), which Laplace transform k̂(s) is well-defined for s > 0

and is such that (k̂(s))−1 is a Bernstein function.
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